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Special Solution of the Mode-Coupling Equations 
for a Two-Component Magnetic System 
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The validity of the vertex approximation for the nonlinear Langevin equations 
has been investigated in the special case of a two-component magnetic system 
without spatial correlation. The exact solution of the equation resulting from the 
vertex approximation is compared with that of the original equation. Agreement 
is found in the regime of small nonlinearity. In the opposite regime, especially 
near a critical slowing down, both solutions differ significantly. 
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The macroscopic behavior of magnetization densities, as, e.g., the conduc- 
tion electron and impurity magnetization in a Kondo-like system, is gov- 
erned by coupled Bloch equations, (l> which usually originate as a hydrody- 
namic limit from the microscopic equations of motion. (2) The neglect of 
quickly varying contributions in those derivations may be crucial under 
circumstances where the macroscopic coupling becomes prominent  or, 
more serious, diverges because of weak approximations. It may be accoun- 
ted for in a simplifying view by adding phenomenologically Gaussian 
random forces. Such a situation arises in Kondo theories applying a specific 
perturbation scheme which results in a coupling which is strong compared 
with slow relaxation rates for low temperatures. (3) Furthermore the random 
forces are a natural consequence of the fluctuation-dissipation theorem 
representing the origin of the dissipation terms in the Bloch equatios. 

Recently Ginzburg-Landau  equations of a similar type have become 
attractive in the context of dynamics of phase transitions. It  opens a wide 
spectrum of methods to treat such nonlinear Langevin equations. One of 
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them, the lowest-order vertex approximation of Kawasaki, (4) will be used 
here. The respective nonlinear integral equations for the correlation func- 
tions are generally nontrivial. They are solved for the special case where the 
volume of a homogenous independently fluctuating magnetization is char- 
acterized in size by a diffusion length to account for the diffusion of the 
mobile component. Equal lattice relaxation rates are assumed. The symmet- 
ric behavior of both components with respect to the lattice implies a linear 
dissipation of the total magnetization. Together with the detailed balance 
condition for the cross relaxation rates this yields a convolution integral 
solved by Laplace transformation. This solution could be used as a test for 
the validity of the vertex approximation. 

In Section 1 the Bloch equations are introduced and supplemented by 
random forces. The mode-coupling equations of Kawasaki are derived in 
Section 2. The solution is presented in Section 3 and compared in Section 4 
with the corresponding solution of the exact Bloch equations. 

1. BLOCH EQUATIONS 

The set of equations describing the system of coupled magnetization 
densities Sl, $2 in zero field 

dS, aTx,(S2X 8H) 8H +~1 
at - ~ - E L ,k - rg ;  

k 

d-[ - aTx2 S' • -~2 - E L2k ~-~k 
k 

uses the equilibrium Hamiltonian at temperature T 

H = l f d 3 x [ 1  $2+ 1 2 ~Z ' ~s~) 

with susceptibilities Xi, to yield the torque term representing the coupling 
with coefficient a and the dissipation term with matrix 

I 
X1 - D V  2 +  1 + 1 1 

1 ( ,  , )  
- x~ r~, x~ ~ 1  + ~ o  

Only component S l is assumed to show appreciable diffusion leading to the 
term with coefficient D. The cross relaxation rates satisfy the Onsager 
symmetry relation 

X2 X1 
T21 TI2 
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Vanishing lattice relaxation rates 1/Tlo  and vanishing diffusion would 
imply local angular momentum conservation, $1 + $2, in the deterministic 
case. The Gaussian forces 

(~i~(t)) = O, (~iu(t)~k~(t')) = 2LikS~,6(t -- t') 

are correlated by the fluctuation-dissipation theorem, where the differential 
operator in the Onsager coefficients has to be suitably read in Fourier space. 

With respect to the Kondo system, S 1 represents the conduction 
electron and S 2 the impurity magnetization. The coefficients a, D, and 
1/Tl2 show logarithmic singularities in low-order perturbation theory for 
temperature approaching zero. Removing this divergency by diagram sum- 
mation still leaves a strong effect of Kondo interaction around the Kondo 
temperature and below. The impurity susceptibility X2 increases according 
to a Curie law so that the fluctuations do not die out with decreasing 
temperature except at very low temperatures where the susceptibility 
saturates. The impurity relaxation ( l /T20 becomes slow for low tempera- 
tures. The lattice relaxation rates 1/Tlo,  1/T2o are small and do not 
depend on temperature. 0) 

2. MODE-COUPLING APPROXIMATION 

A Lagrangian formalism (5) is applied to derive the mode-coupling 
equations governing the correlation functions 

Gq~,qw(t - t') = (Sq~(t)Sq,~,(t')) (1) 

for the Fourier quantities Sq~(t) of the densities. The letter ~ = (i,/~) 
denotes the ith magnetization component with Cartesian index /,. The 
average in (1) with respect to the fluctuating forces can be replaced by a 
functional integration over a probability distribution of the magnetizations 

W ( ( S ( t ) } , t o < t < t , ) d ( S ) - - f d { i S } e x p ( - f , ~ ' d t L ) d { S }  (2) 

determined by the Lagrangian 

L= f +x ( -  2Z(x,O oo,Z,(x,o + 2Z(x ,o[  z (x ,o  - 

+ E (x,t) (3) 

with 

k a T  8H 6H 

L~,  ~ Lii,8~g 
(4) 
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Extending the limits of integration in (2) to--> -oo,  t t ~ + oo the definition 
(1) coincides with the static equilibrium correlation function which will be 
the required quantity. The last term in (3) which reflects the Jacobian of the 
probabilities transformation does not depend on S. and is omitted in the 
following. To obtain the correlation functions by differentiation of a 
common generating functional, response fields /~.(t) associated with the 
subsidiary magnetizations S.(x, t) are introduced in addition to the physi- 
cal fields B~(t) by merely adding to L (3) 

Differentiating the generating functional, i.e., the logarithm of the d { S } 
integral of W({S}), with respect to B or B yields the cumulants. Only 
connected diagrams have to be considered in the subsequent expansion in 
powers of the nonlinear contributions to V~. The latter corresponds to the 
first term on the right-hand side of (4). It has a vanishing average with the 
unperturbed Lagrangian because of the antisymmetric unit tensor c,~, 
which excludes self-loops. The zero-order propagators derive from the 
unperturbed, Gaussian probability 

(Sq~(t)gq,~,(t')> o = (27r)38(q + q')8~,O(t - t ')(e-V(t-c))i  i, 

= G~ t') = a t q ~ a ' t  ' (6) 

< s , o ( % o , ( , ' ) > o  = - ,')xi, + ,)x,) 

= a % , o , ( t -  c)  = o,t o 'c (7) 

a =  (i, /z) 1-~-L S ~ ( x , t ) =  ( 8  (t ,  eiq x, f q ~ f  d3q 
~lik ~ TXk ik, 3q q'~" j (2~-) 3 ' 

The perturbation expansion for the correlation function (1) involves the 
pair contractions of powers of the bare interaction vertex 

• fq3(2~r)38(ql + q2 + q3)C~ ..... Sq,<( t )Sq~( t )Sq~( t )  

= ql.~;...~3q3 (8) 

C~,~2~, ~�89 6,,,3 ) (9) 

and of the two external legs with suitable numerical factors. (6) The integral 
equations of the mode-coupling theory may be obtained by partial summa- 
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tion of diagrams, especially neglecting all vertex corrections to the self- 
energy E: 

c 

d 
Thus in shorthand notation 

= d o +  g ~  
(lO) 

G = GO+ G~ 
especially for the first equation 

G~,(q,t)  = O(t )8~ , (e -Vt ) i r+4 E C~,~3C~3~3 
O~ I . . . IX~3 

X i tdtl J0 r ~qql6~t~l(q''- tl)G~ ' t l  - - t ] )  

x G~3:;(q - q , ,  t, - tl)U:,,,(q, t]) (11) 

omitting the factor (27r)38(q + q') in the definition of G(q, t). The require- 
ment of causality can be fulfilled by the solution to (10). It connects both 
correlation functions by 

G~,(q, t)Txr = O(t)G~,(q,  t) (12) 

so that G, G deeouple and only G arises in (11). It represents a nonlinear 
integral equation for the time-dependent matrix G. 

3. SOLUTION 

As an ansatz the correlation function is taken to be diagonal with 
respect to the vector components of the magnetizations, i.e., 

8~,(q, t) = 8~,g,r(t)O(t), gir(0) = 8,,, (13) 

and thus (11) leads to 

( ~ +  2 t 

(14) 

with matrix X defined by X;k ~- X;. In the following the diffusion term in 3' is 
neglected. In addition the lattice relaxation rates are assumed to be equal 
(Tl0 = T20 ). From that the linear dissipation of the total magnetization 
follows 

-~ + (glk + g2k) = 0 (15) 
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Furthermore one derives from (14) an expression reflecting the detailed 
balance for this symmetric system 

Xlg21 = Xzg12 (16) 

Only one quantity 

g-  = gll - g12 (17) 

remains to be calculated. From (14) using (15), (16), (17) the integral 
equation 

Ti2 X2 

= -2a2T(x~ + X2)f0'dCe ~'-")/r'~ (t -- C)g_ (C) (18) 

with g_ (0) = 1 follows. The integrand in (14) is assumed to be independent 
of momentum below a cutoff which corresponds to an inverse spin diffu- 
sion length (DTlo) -1/2. Thus the q-integral is incorporated in a modified 
coupling constant 82= o~2(DTlo)-3/2. Equation (18) can be solved by 
Laplace transformation 

_ l + I s  + !+T,0 ! ( 1  + T , 2  x2X-L)] g - ( s )  

= - 2 S 2 T ( x , + x 2 ) g -  s+ ~ g_(s) (19) 

This difference equation with respect to the increment 1/Tl0 of s is 
simplified introducing the quantities 

v= s + ~  l+--X2 T i n '  f~=282T(xl+xz)rl~ 
(20) 

x= 2T10[2S2T(x1 + X2)] 1/2 

and yields 

L + I  4- (b' "[- 1) = x i / 4 f v  (21) 

which is reduced with a simple trick borrowed from the theory of continued 
fractions. The unknown function is replaced by a fraction 

f~_ u~ (22) % 

and comparing nominator and denominator of the resulting equation, a 
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solution is obtained by solving the linear difference equations 

2v 
D r _  1 - -  D r +  1 = - - ~  D v 

(23) 
X 

/dr ~ "2"/)v+ 1 

The first equation of (23) is identical with the recurrence formula for the 
Bessel function with imaginary argument, I~(x). Thus one solution of (19) 
reads 

2T!0 
g _ ( s ) =  x I~+,(x)/I~(x) (24) 

According to (20) the complex variable s of the Laplace transform arises in 
the order of the Bessel function while the argument x is a positive 
parameter as long as the coupling does not vanish. The solution (24) shows 
for large Isl the asymptotic behavior as implied by (19), ~(s)oc 1/s. The 
continued fraction following from (21) converges as v ~  +oo and thus 
defines uniquely the solution f, for v > - 1 on the real axis. Therefore (24) 
represents the unique solution for s complex being analytic with the 
exception of the zeros of the Bessel function. 

The case of zero coupling, x = 0, is trivial and (24) leads to a linear 
relaxation g_ (t) coinciding with the rate on the left-hand side of (18). The 
large t behavior follows from that pole of (24) which has the largest real 
part with respect to s. Up to order 82 the decay rate of g_ (t) is given by 

1 1 2 - , o  = + + ' ~ 1 7 6 1 7 6  s , 0  (25) 

with ~2 = 282T(x1 + X2) being the average of the squared (coupling in- 
duced) precession frequency a n d  Z c r l ~  T121(1 + XI/X2) an effective cross 
relaxation rate. A further quantity measuring an average decay time can be 
extracted immediately from the Laplace transform 

=--s g_ (t) dt = g_ (0) (26) r0 

which yields in order ~2 a slightly different expression 
2 

1 _ 1 + 1 %T1oT~r g~--->O (27) 
% TI~ ~ + 2Tot + Tlo ' 

Strong coupling leads asymptotically to 

r0 ~ + ~ , S---> m (28) 

The Laplace transform is easily inverted for the first few terms of an 



614 Sehattke 

expansion with respect to a small lattice relaxation rate 1/T10 

I 1 sin(2~%t) l (29) 1 e - t /T ,  j l ( 2 ~ t ) _  
g_ ( t )  = , ~ t  

showing an oscillatory behavior and a slowing down to a t -3/2 power law 
for vanishing relaxation rates Tlo 1, T~- ~. The latter is quite different from 
the deterministic result of an undamped precession of the individual 
magnetizations with respect to the total magnetization. 

4. CONCLUSION 

To get a feeling for the validity of the vertex approximation it seems to 
be useful to compare its results with 'calculations which are performed on 
the original Bloch equations in special solvable cases. Under the restriction 
leading to (29) it is possible to obtain also an exact solution of the 
equations cited in Section 1. In the Fourier representation along the same 
reasoning only the small momentum components are considered and taken 
to be independent of momentum. Below the cutoff the momentum index 
drops out and a has to be replaced by c7. Introducing 

S ~--- S1 --[- $2, s----SI/T12-S2/T21 

The component of the total magnetization yields 

S= fotdt lexp[-( t -  tl)/Tlol~(tO ~e(t)  

if the initial value is set equal to zero. It only consists of a weakly 
fluctuating part as can be seen from the correlation functions given in 
Section 1. 

(%(t)e~(t')) = 8~ T(X1 + X2){exp(-I t  - t ' l /Tlo) - exp I - (t + t')/Tlo ] } 

Performing the limit t, t ' ~  ce with finite ( t -  t') to get rid of the initial 
values, the correlation time increases with increasing T10. In the limit 
T l o ~  oo the correlation function becomes constant in time yielding time- 
independent, Gaussian distributed random variables e,. As a consequence 
the magnetization difference s obeys a linear differential equation with 
constant random coefficients following from the Bloch equations 

where 

~ = 6 s X e - s / T c r +  ~ 

2Txl 
(~At)~(C)> - r12Tgr a ~ a ( t  - c) 
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It is straightforward to integrate this differential equation yielding the 
correlation function 

(s~(t)s~(t'))= 6~ TXI exp(-]t-t'[/Tcr)(1 4" 2(cos~ffe2-(/ - tt))) 
3 T 12 Tcr 

(30) 

with 

- , ~ 0 ~ ( t - t )  ] e x p l - ~ % ( t -  t') 2] 

Because of definition the following relation holds: 

(s~(t)s~(t')) -- 8~ TXI (t >1 t' T12Tcr g_ - t'), t 

and the result in (29) for l/T10 = 0 can be compared with (30). The 
solution of the vertex approximation differs qualitatively from the solution 
of the Bloch equations and shows a remarkably slower decay than the latter 
in the short time behavior. As is to be expected, both expressions coincide 
within quadratic order of the coupling constant. The difference increases 
with increasing coupling strength. With respect to the long time behavior 
the vertex approximation works in the regime Tcr~ % << 1, i.e., as long as the 
precession period is much greater than the relaxation time. In the opposite 
regime, especially in the case of a critical slowing down of the relaxation 
rate, this approximation fails. There seems to be little reason that this 
situation improves if the diffusion with its momentum dependence is 
properly taken into account. 
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